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Technical Advancements
for Life of Pi

1. Hair Shading
 Extensive use of area lights, ray tracing

2. Renderer Optimizations
 Reduced render times & maintained quality

3. Postprocessing
 Moved operations from renderer into 2D
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 First show to use area lights almost exclusively
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 How to deal with them efficiently
 Good Importance Sampling:

 Rectangles
 Spheres
 Environment lights
 Ray Magnets

 shapes that attract light rays
to geometry
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 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.
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Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using
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 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

 Stochastic light selection

268 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.
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9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using
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 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

 Stochastic light selection
 based on solid angle, average radiance
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Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using
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Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.
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 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

 Stochastic light selection
 based on solid angle, average radiance
 also uses MIS

268 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.
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 Adaptive Importance Sampling [Neulander11]
 Sampled ray directions are rated for contribution
 Poorly rated directions are rejected in the future
 Reduces shadow noise
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 Cone-Shell BSDF [Neulander10]
 Dual highlights (inspired by Marschner)

 shift parameter t when computing spline tangents
 randomize t to break up highlight
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 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model
 Implementation:

 inverse CDF table, interpolate between entries
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 Based on volumetric occlusion model
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 Based on volumetric occlusion model
 First introduced in [Neulander04]

 approximates fractional ray occlusion by fur & skin
 We use only skin sphere for full/no occlusion
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 Hybrid renderer:
 Scanline mode:

 thick, semitransparent strands
 Raytraced occlusion:

 thinned, opaque strands (of equal coverage)
 thickness, opacity can vary along strand

 Fewer ray hits, no further transparency rays

2) Renderer Optimizations:
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 Large speed increase
 Only subtle visual effect
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Screen Door Transparency: off
70 sec 
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Screen Door Transparency: off
70 sec 
Screen Door Transparency: on
35 sec 

 Large speed increase
 Only subtle visual effect
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 Quad BVH architecture
 tries to process up to 4 hair segments at once
 SSE optimizations
 memory arena via anonymous mmap
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 Quad BVH architecture
 tries to process up to 4 hair segments at once
 SSE optimizations
 memory arena via anonymous mmap

 Ray-hair intersection based on Ray Tracing for 
Curves Primites [Nakamaru, Ohno WSCG 2002]
 hair CP-segment-based bbox construction
 Surface Area Heuristic evaluation
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 Recent development
 Disk-Based storage of complete BVH

 user-defined RAM footprint
 computed once and stored on disk
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25 million rays; 260 s6.2 million rays; 76 s

 Introduced in [Neulander10]
 caches reflected radiance

 at primary rays along strand
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 Enhancements
 Cache can now store

 diffuse reflection
 primary specular reflection
 secondary specular reflection
 various light paths for above

 Clustered allocation improves memory access

2) Renderer Optimizations:
Reflection Cache
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 Improved performance of hair reflection cache
 Reads are not blocked by cache updates
 Writes use Read-Copy-Update (RCU) for 

synchronization
 RCU is used extensively in the Linux kernel
 Allows lock-free cache reads

2) Renderer Optimizations:
Multithreading
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 Cache replacement policy with RCU:
 Remove index but keep data while readers exist
 After some period, readers must finish
 At that point, remove data from cache

 Improved concurrency:
 near-linear speed (8 threads)
 slight memory increase

2) Renderer Optimizations:
Multithreading
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 pixmotor: pixel motion integrator [Neulander07]
 Screen-space motion vectors, depth values

output by renderer
 Integrated as a plugin into compositing software

3) Postprocessing:
Motion Blur
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 Synthesize right-eye image from left-eye image
 pixstereo: modified form of pixmotor

 We have:
 camera-projected image
 depth values
 camera parameters
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 We can construct 3D “surface” of each pixel and 
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 We can construct 3D “surface” of each pixel and 
reproject to other camera

 Use this to compute screen-space motion vectors
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 Recipe:
 Compute parallax-based motion vectors
 Compute motion gradient image
 Fill holes using heuristics
 Build result at 4x+ resolution, then downsample
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1x reso, heuristics off2x reso, heuristics off4x reso, heuristics off4x reso, heuristics on
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3) Postprocessing:
Pixmotor/Pixstereo Optimization
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 High-res work buffer stores only pixel coords
 pair of 16-bit coords instead of many floats

(plus one float for depth)
 faster due to lower memory bandwidth

3) Postprocessing:
Pixmotor/Pixstereo Optimization

x y
z
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3) Postprocessing:
Pixstereo Quality
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 Most of credit for the look of the fur in Life of Pi 
goes to the digital artists

 Main contributions of our rendering software:
 A good level of realism is achievable
 Results are highly art-directable
 Rendering is fast enough for many lighting iterations

 Future work:
 Improve hair scattering, including multiple scatter

Conclusions & Future Work
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