
Rendering Fur in
Life of Pi

Toshi Kato
Kevin Beason
Rhythm & Hues Studios

Ivan Neulander
Google

1Thursday, July 25, 13



Rendering Fur in
Life of Pi

Toshi Kato
Kevin Beason
Rhythm & Hues Studios

Ivan Neulander
Google

1Thursday, July 25, 13



Rendering Fur in
Life of Pi

Toshi Kato
Kevin Beason
Rhythm & Hues Studios

Ivan Neulander
Google

1Thursday, July 25, 13



Over the years...

2Thursday, July 25, 13



Over the years...

Coca Cola Polar Bears (1993-1996)

2Thursday, July 25, 13



Over the years...

3Thursday, July 25, 13



Over the years...

Cats & Dogs (2001)

3Thursday, July 25, 13



Over the years...

4Thursday, July 25, 13



Over the years...

Garfield, Garfield 2 (2004, 2006)

4Thursday, July 25, 13



Over the years...

5Thursday, July 25, 13



Over the years...

Chronicles of Narnia (2005)

5Thursday, July 25, 13



Over the years...

6Thursday, July 25, 13



Over the years...

Life of Pi (2012)

6Thursday, July 25, 13



Over the years...

Life of Pi (2012)

6Thursday, July 25, 13



Technical Advancements
for Life of Pi

7Thursday, July 25, 13



Technical Advancements
for Life of Pi

1. Hair Shading
 Extensive use of area lights, ray tracing

7Thursday, July 25, 13



Technical Advancements
for Life of Pi

1. Hair Shading
 Extensive use of area lights, ray tracing

2. Renderer Optimizations
 Reduced render times & maintained quality

7Thursday, July 25, 13



Technical Advancements
for Life of Pi

1. Hair Shading
 Extensive use of area lights, ray tracing

2. Renderer Optimizations
 Reduced render times & maintained quality

3. Postprocessing
 Moved operations from renderer into 2D

7Thursday, July 25, 13



1) Hair Shading:
Area Lights

8Thursday, July 25, 13



 First show to use area lights almost exclusively

1) Hair Shading:
Area Lights

8Thursday, July 25, 13



 First show to use area lights almost exclusively
 Captures wide variety of lighting environments

1) Hair Shading:
Area Lights

8Thursday, July 25, 13



1) Hair Shading:
Area Lights

9Thursday, July 25, 13



 First show to use area lights almost exclusively
 Blends realistically with live-action footage

1) Hair Shading:
Area Lights

9Thursday, July 25, 13



 First show to use area lights almost exclusively
 Blends realistically with live-action footage

1) Hair Shading:
Area Lights

9Thursday, July 25, 13



1) Hair Shading:
Area Lights

10Thursday, July 25, 13



 How to deal with them efficiently
 Good Importance Sampling:

1) Hair Shading:
Area Lights

10Thursday, July 25, 13



 How to deal with them efficiently
 Good Importance Sampling:

 Rectangles

1) Hair Shading:
Area Lights

10Thursday, July 25, 13



 How to deal with them efficiently
 Good Importance Sampling:

 Rectangles

1) Hair Shading:
Area Lights

10Thursday, July 25, 13



 How to deal with them efficiently
 Good Importance Sampling:

 Rectangles
 Spheres

1) Hair Shading:
Area Lights

10Thursday, July 25, 13



 How to deal with them efficiently
 Good Importance Sampling:

 Rectangles
 Spheres
 Environment lights

1) Hair Shading:
Area Lights

10Thursday, July 25, 13



 How to deal with them efficiently
 Good Importance Sampling:

 Rectangles
 Spheres
 Environment lights
 Ray Magnets

 shapes that attract light rays
to geometry

1) Hair Shading:
Area Lights

10Thursday, July 25, 13



1) Hair Shading:
Area Lights

11Thursday, July 25, 13



 Multiple Importance Sampling (MIS) [Veach97]:

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance268 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

 Stochastic light selection

268 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

 Stochastic light selection
 based on solid angle, average radiance

268 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


 Multiple Importance Sampling (MIS) [Veach97]:
 BSDF vs Light Importance

 Stochastic light selection
 based on solid angle, average radiance
 also uses MIS

268 CHAPTER 9. MULTIPLE IMPORTANCE SAMPLING

Figure 9.4: This image was rendered using both the BSDF sampling strategy and the light
source sampling strategy. The samples are exactly the same as those for Figure 9.2(a) and
(b), except that here the two kinds of samples are combined using the balance heuristic. This
leads to a strategy that is effective over the entire range of glossy surfaces and light source
geometries.

heuristic with the exponent .

9.2.3.1 Low-variance problems: examples and analysis

Figure 9.4 shows the balance heuristic applied to glossy highlights problem of Section 9.1.
This image combines the samples fromFigure 9.2(a) and (b), which used the BSDF and light
source sampling strategies respectively. By combining both kinds of samples, we obtain a
strategy that works well over the entire range of surface finishes and light source geometries.

In some regions of the image, however, the balance heuristic does not work quite as well
as the best of the given sampling techniques. Figure 9.5 demonstrates this, by comparing the
balance heuristic against images that use the BSDF or light source samples alone. Columns
(a), (b), and (c) show close-ups of the images in Figure 9.2(a), Figure 9.2(b), and Figure 9.4
respectively. To make the differences more obvious, these images were computed using

9.1. GLOSSY HIGHLIGHTS FROM AREA LIGHT SOURCES 255

(a) Sampling the BSDF (b) Sampling the light sources

Figure 9.2: A comparison of two sampling techniques for glossy highlights from area light
sources. There are four spherical light sources of varying radii and color, plus a spotlight
overhead. All spherical light sources emit the same total power. There are also four shiny
rectangular plates, each one tilted so that we see the reflected light sources. The plates have
varying degrees of surface roughness, which controls how sharp or fuzzy the reflections are.

Given a viewing ray that strikes a glossy surface (see Figure 9.1), images (a) and (b)
use different sampling techniques for the highlight calculation. Both images are 500 by 500
pixels.

(a) Incident directions are chosen with probability proportional to the BSDF
, using samples per pixel. We call this strategy sampling the BSDF.

(b) Sample points are randomly chosen on each light source , using samples
per pixel (per light source). The samples are uniformly distributed within the solid angle
subtended by at the current point . We call this strategy sampling the light source.

The glossy BSDF used in these images is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is , where is the surface roughness
parameter mentioned above, and . The glossy surfaces also have a small diffuse
component. Similar effects would occur with other glossy BSDF’s.

1) Hair Shading:
Area Lights

11Thursday, July 25, 13

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/


1) Hair Shading:
Area Lights

12Thursday, July 25, 13



 Adaptive Importance Sampling [Neulander11]
 Sampled ray directions are rated for contribution
 Poorly rated directions are rejected in the future

1) Hair Shading:
Area Lights

12Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


 Adaptive Importance Sampling [Neulander11]
 Sampled ray directions are rated for contribution
 Poorly rated directions are rejected in the future
 Reduces shadow noise

1) Hair Shading:
Area Lights

12Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


1) Hair Shading:
Area Lights

13Thursday, July 25, 13



1) Hair Shading:
Area Lights

 Adaptive Importance Sampling [Neulander11]
 Well suited to fur

13Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


1) Hair Shading:
Area Lights

 Adaptive Importance Sampling [Neulander11]
 Well suited to fur

 lots of occlusion

13Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


1) Hair Shading:
Area Lights

 Adaptive Importance Sampling [Neulander11]
 Well suited to fur

 lots of occlusion

13Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


1) Hair Shading:
Area Lights

 Adaptive Importance Sampling [Neulander11]
 Well suited to fur

 lots of occlusion

13Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


1) Hair Shading:
Area Lights

 Adaptive Importance Sampling [Neulander11]
 Well suited to fur

 lots of occlusion

13Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2011
http://www.neulander.org/work/%23sketch2011


1) Hair Shading:
BSDF

14Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]

1) Hair Shading:
BSDF

14Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]

1) Hair Shading:
BSDF

14Thursday, July 25, 13



1) Hair Shading:
BSDF

15Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]

1) Hair Shading:
BSDF

15Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]
 Dual highlights (inspired by Marschner)

 shift parameter t when computing spline tangents
 randomize t to break up highlight

1) Hair Shading:
BSDF

15Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]
 Dual highlights (inspired by Marschner)

 shift parameter t when computing spline tangents
 randomize t to break up highlight

1) Hair Shading:
BSDF

16Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]
 Dual highlights (inspired by Marschner)

 shift parameter t when computing spline tangents
 randomize t to break up highlight

1) Hair Shading:
BSDF

16Thursday, July 25, 13



 Cone-Shell BSDF [Neulander10]
 Dual highlights (inspired by Marschner)

 shift parameter t when computing spline tangents
 randomize t to break up highlight

1) Hair Shading:
BSDF

16Thursday, July 25, 13



1) Hair Shading:
BSDF

17Thursday, July 25, 13



1) Hair Shading:
BSDF

17Thursday, July 25, 13



1) Hair Shading:
BSDF

17Thursday, July 25, 13



1) Hair Shading:
BSDF

17Thursday, July 25, 13



1) Hair Shading:
BSDF

17Thursday, July 25, 13



1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler

1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model

1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model

1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model

1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model

1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model

1) Hair Shading:
BSDF

18Thursday, July 25, 13



 Wigner Semicircle Importance Sampler
 Closer to optimal than previous model
 Implementation:

 inverse CDF table, interpolate between entries

1) Hair Shading:
BSDF

18Thursday, July 25, 13



2) Renderer Optimizations:
Skin Occlusion

19Thursday, July 25, 13



 Based on volumetric occlusion model

2) Renderer Optimizations:
Skin Occlusion

19Thursday, July 25, 13



 Based on volumetric occlusion model
 First introduced in [Neulander04]

2) Renderer Optimizations:
Skin Occlusion

19Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2004
http://www.neulander.org/work/%23sketch2004


 Based on volumetric occlusion model
 First introduced in [Neulander04]

 approximates fractional ray occlusion by fur & skin

2) Renderer Optimizations:
Skin Occlusion

skin
fur

19Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2004
http://www.neulander.org/work/%23sketch2004


 Based on volumetric occlusion model
 First introduced in [Neulander04]

 approximates fractional ray occlusion by fur & skin

2) Renderer Optimizations:
Skin Occlusion

skin
fur

19Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2004
http://www.neulander.org/work/%23sketch2004


 Based on volumetric occlusion model
 First introduced in [Neulander04]

 approximates fractional ray occlusion by fur & skin

2) Renderer Optimizations:
Skin Occlusion

skin
fur

19Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2004
http://www.neulander.org/work/%23sketch2004


 Based on volumetric occlusion model
 First introduced in [Neulander04]

 approximates fractional ray occlusion by fur & skin
 We use only skin sphere for full/no occlusion

2) Renderer Optimizations:
Skin Occlusion

skin
fur

19Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2004
http://www.neulander.org/work/%23sketch2004


 Based on volumetric occlusion model
 First introduced in [Neulander04]

 approximates fractional ray occlusion by fur & skin
 We use only skin sphere for full/no occlusion

2) Renderer Optimizations:
Skin Occlusion

skin
fur

19Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2004
http://www.neulander.org/work/%23sketch2004


 Significant
speedup (~50%)

 Minimal image
difference

 Controllable
speed/quality

2) Renderer Optimizations:
Skin Occlusion

20Thursday, July 25, 13



 Significant
speedup (~50%)

 Minimal image
difference

 Controllable
speed/quality

2) Renderer Optimizations:
Skin Occlusion

21 million rays; 141 sec
20Thursday, July 25, 13



 Significant
speedup (~50%)

 Minimal image
difference

 Controllable
speed/quality

2) Renderer Optimizations:
Skin Occlusion

21 million rays; 141 sec11 million rays; 95 sec
20Thursday, July 25, 13



2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Hybrid renderer:

2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Hybrid renderer:
 Scanline mode:

 thick, semitransparent strands

2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Hybrid renderer:
 Scanline mode:

 thick, semitransparent strands
 Raytraced occlusion:

 thinned, opaque strands (of equal coverage)
 thickness, opacity can vary along strand

2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Hybrid renderer:
 Scanline mode:

 thick, semitransparent strands
 Raytraced occlusion:

 thinned, opaque strands (of equal coverage)
 thickness, opacity can vary along strand

2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Hybrid renderer:
 Scanline mode:

 thick, semitransparent strands
 Raytraced occlusion:

 thinned, opaque strands (of equal coverage)
 thickness, opacity can vary along strand

2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Hybrid renderer:
 Scanline mode:

 thick, semitransparent strands
 Raytraced occlusion:

 thinned, opaque strands (of equal coverage)
 thickness, opacity can vary along strand

 Fewer ray hits, no further transparency rays

2) Renderer Optimizations:
Screen Door Transparency

21Thursday, July 25, 13



 Large speed increase
 Only subtle visual effect

2) Renderer Optimizations:
Screen Door Transparency

22Thursday, July 25, 13



Screen Door Transparency: off
70 sec 

 Large speed increase
 Only subtle visual effect

2) Renderer Optimizations:
Screen Door Transparency

22Thursday, July 25, 13



Screen Door Transparency: off
70 sec 
Screen Door Transparency: on
35 sec 

 Large speed increase
 Only subtle visual effect

2) Renderer Optimizations:
Screen Door Transparency

22Thursday, July 25, 13



2) Renderer Optimizations:
BVH Ray Tracer

23Thursday, July 25, 13



 Quad BVH architecture
 tries to process up to 4 hair segments at once
 SSE optimizations
 memory arena via anonymous mmap

2) Renderer Optimizations:
BVH Ray Tracer

23Thursday, July 25, 13



 Quad BVH architecture
 tries to process up to 4 hair segments at once
 SSE optimizations
 memory arena via anonymous mmap

 Ray-hair intersection based on Ray Tracing for 
Curves Primites [Nakamaru, Ohno WSCG 2002]
 hair CP-segment-based bbox construction
 Surface Area Heuristic evaluation

2) Renderer Optimizations:
BVH Ray Tracer

23Thursday, July 25, 13



2) Renderer Optimizations:
BVH Ray Tracer

24Thursday, July 25, 13



 Recent development
 Disk-Based storage of complete BVH

 user-defined RAM footprint
 computed once and stored on disk

2) Renderer Optimizations:
BVH Ray Tracer

24Thursday, July 25, 13



2) Renderer Optimizations:
Reflection Cache

25Thursday, July 25, 13



25 million rays; 260 s

 Introduced in [Neulander10]

2) Renderer Optimizations:
Reflection Cache

25Thursday, July 25, 13



25 million rays; 260 s6.2 million rays; 76 s

 Introduced in [Neulander10]

2) Renderer Optimizations:
Reflection Cache

25Thursday, July 25, 13



25 million rays; 260 s6.2 million rays; 76 s

 Introduced in [Neulander10]
 caches reflected radiance

 at primary rays along strand

2) Renderer Optimizations:
Reflection Cache

25Thursday, July 25, 13



2) Renderer Optimizations:
Reflection Cache

26Thursday, July 25, 13



 Enhancements

2) Renderer Optimizations:
Reflection Cache

6.2 million rays; 76 s

26Thursday, July 25, 13



 Enhancements
 Cache can now store

 diffuse reflection
 primary specular reflection
 secondary specular reflection

2) Renderer Optimizations:
Reflection Cache

6.2 million rays; 76 s

26Thursday, July 25, 13



 Enhancements
 Cache can now store

 diffuse reflection
 primary specular reflection
 secondary specular reflection
 various light paths for above

2) Renderer Optimizations:
Reflection Cache

6.2 million rays; 76 s

26Thursday, July 25, 13



 Enhancements
 Cache can now store

 diffuse reflection
 primary specular reflection
 secondary specular reflection
 various light paths for above

 Clustered allocation improves memory access

2) Renderer Optimizations:
Reflection Cache

25 million rays; 260 s6.2 million rays; 76 s

26Thursday, July 25, 13



2) Renderer Optimizations:
Multithreading

27Thursday, July 25, 13



 Improved performance of hair reflection cache

2) Renderer Optimizations:
Multithreading

27Thursday, July 25, 13



 Improved performance of hair reflection cache
 Reads are not blocked by cache updates

2) Renderer Optimizations:
Multithreading

27Thursday, July 25, 13



 Improved performance of hair reflection cache
 Reads are not blocked by cache updates
 Writes use Read-Copy-Update (RCU) for 

synchronization

2) Renderer Optimizations:
Multithreading

27Thursday, July 25, 13



 Improved performance of hair reflection cache
 Reads are not blocked by cache updates
 Writes use Read-Copy-Update (RCU) for 

synchronization
 RCU is used extensively in the Linux kernel
 Allows lock-free cache reads

2) Renderer Optimizations:
Multithreading

27Thursday, July 25, 13



2) Renderer Optimizations:
Multithreading

28Thursday, July 25, 13



 Cache replacement policy with RCU:

2) Renderer Optimizations:
Multithreading

28Thursday, July 25, 13



 Cache replacement policy with RCU:
 Remove index but keep data while readers exist

2) Renderer Optimizations:
Multithreading

28Thursday, July 25, 13



 Cache replacement policy with RCU:
 Remove index but keep data while readers exist
 After some period, readers must finish

2) Renderer Optimizations:
Multithreading

28Thursday, July 25, 13



 Cache replacement policy with RCU:
 Remove index but keep data while readers exist
 After some period, readers must finish
 At that point, remove data from cache

2) Renderer Optimizations:
Multithreading

28Thursday, July 25, 13



 Cache replacement policy with RCU:
 Remove index but keep data while readers exist
 After some period, readers must finish
 At that point, remove data from cache

 Improved concurrency:
 near-linear speed (8 threads)
 slight memory increase

2) Renderer Optimizations:
Multithreading

28Thursday, July 25, 13



 pixmotor: pixel motion integrator [Neulander07]
 Screen-space motion vectors, depth values

output by renderer
 Integrated as a plugin into compositing software

3) Postprocessing:
Motion Blur

29Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2007
http://www.neulander.org/work/%23sketch2007


 pixmotor: pixel motion integrator [Neulander07]
 Screen-space motion vectors, depth values

output by renderer
 Integrated as a plugin into compositing software

3) Postprocessing:
Motion Blur

29Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2007
http://www.neulander.org/work/%23sketch2007


 pixmotor: pixel motion integrator [Neulander07]
 Screen-space motion vectors, depth values

output by renderer
 Integrated as a plugin into compositing software

3) Postprocessing:
Motion Blur

29Thursday, July 25, 13

http://www.neulander.org/work/%23sketch2007
http://www.neulander.org/work/%23sketch2007


3) Postprocessing:
Motion Blur

30Thursday, July 25, 13



3) Postprocessing:
Motion Blur

30Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

31Thursday, July 25, 13



 Synthesize right-eye image from left-eye image

3) Postprocessing:
Stereo Synthesis

31Thursday, July 25, 13



 Synthesize right-eye image from left-eye image
 pixstereo: modified form of pixmotor

3) Postprocessing:
Stereo Synthesis

31Thursday, July 25, 13



 Synthesize right-eye image from left-eye image
 pixstereo: modified form of pixmotor

 We have:
 camera-projected image

3) Postprocessing:
Stereo Synthesis

31Thursday, July 25, 13



 Synthesize right-eye image from left-eye image
 pixstereo: modified form of pixmotor

 We have:
 camera-projected image
 depth values

3) Postprocessing:
Stereo Synthesis

31Thursday, July 25, 13



 Synthesize right-eye image from left-eye image
 pixstereo: modified form of pixmotor

 We have:
 camera-projected image
 depth values
 camera parameters

3) Postprocessing:
Stereo Synthesis

31Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

32Thursday, July 25, 13



 We can construct 3D “surface” of each pixel and 
reproject to other camera

3) Postprocessing:
Stereo Synthesis

32Thursday, July 25, 13



 We can construct 3D “surface” of each pixel and 
reproject to other camera

 Use this to compute screen-space motion vectors

3) Postprocessing:
Stereo Synthesis

32Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

33Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

33Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

33Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

34Thursday, July 25, 13



 Recipe:

3) Postprocessing:
Stereo Synthesis

34Thursday, July 25, 13



 Recipe:
 Compute parallax-based motion vectors

3) Postprocessing:
Stereo Synthesis

34Thursday, July 25, 13



 Recipe:
 Compute parallax-based motion vectors
 Compute motion gradient image

3) Postprocessing:
Stereo Synthesis

34Thursday, July 25, 13



 Recipe:
 Compute parallax-based motion vectors
 Compute motion gradient image
 Fill holes using heuristics

3) Postprocessing:
Stereo Synthesis

34Thursday, July 25, 13



 Recipe:
 Compute parallax-based motion vectors
 Compute motion gradient image
 Fill holes using heuristics
 Build result at 4x+ resolution, then downsample

3) Postprocessing:
Stereo Synthesis

34Thursday, July 25, 13



3) Postprocessing:
Stereo Synthesis

35Thursday, July 25, 13



1x reso, heuristics off

3) Postprocessing:
Stereo Synthesis

35Thursday, July 25, 13



1x reso, heuristics off2x reso, heuristics off

3) Postprocessing:
Stereo Synthesis

35Thursday, July 25, 13



1x reso, heuristics off2x reso, heuristics off4x reso, heuristics off

3) Postprocessing:
Stereo Synthesis

35Thursday, July 25, 13



1x reso, heuristics off2x reso, heuristics off4x reso, heuristics off4x reso, heuristics on

3) Postprocessing:
Stereo Synthesis

35Thursday, July 25, 13



3) Postprocessing:
Pixmotor/Pixstereo Optimization

36Thursday, July 25, 13



 High-res work buffer stores only pixel coords

3) Postprocessing:
Pixmotor/Pixstereo Optimization

36Thursday, July 25, 13



 High-res work buffer stores only pixel coords
 pair of 16-bit coords instead of many floats

(plus one float for depth)

3) Postprocessing:
Pixmotor/Pixstereo Optimization

36Thursday, July 25, 13



 High-res work buffer stores only pixel coords
 pair of 16-bit coords instead of many floats

(plus one float for depth)

3) Postprocessing:
Pixmotor/Pixstereo Optimization

36Thursday, July 25, 13



 High-res work buffer stores only pixel coords
 pair of 16-bit coords instead of many floats

(plus one float for depth)

3) Postprocessing:
Pixmotor/Pixstereo Optimization

x y
z

36Thursday, July 25, 13



 High-res work buffer stores only pixel coords
 pair of 16-bit coords instead of many floats

(plus one float for depth)
 faster due to lower memory bandwidth

3) Postprocessing:
Pixmotor/Pixstereo Optimization

x y
z

36Thursday, July 25, 13



3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo
 need to preserve sharpness of input image

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo
 need to preserve sharpness of input image

 negative lobed filter (Lanczos-windowed sinc)

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo
 need to preserve sharpness of input image

 negative lobed filter (Lanczos-windowed sinc)
 not useful for MB but helps for stereo

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo
 need to preserve sharpness of input image

 negative lobed filter (Lanczos-windowed sinc)
 not useful for MB but helps for stereo

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo
 need to preserve sharpness of input image

 negative lobed filter (Lanczos-windowed sinc)
 not useful for MB but helps for stereo

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



 Improved output filtering for pixstereo
 need to preserve sharpness of input image

 negative lobed filter (Lanczos-windowed sinc)
 not useful for MB but helps for stereo

3) Postprocessing:
Pixstereo Quality

37Thursday, July 25, 13



Conclusions & Future Work

38Thursday, July 25, 13



 Most of credit for the look of the fur in Life of Pi 
goes to the digital artists

Conclusions & Future Work

38Thursday, July 25, 13



 Most of credit for the look of the fur in Life of Pi 
goes to the digital artists

 Main contributions of our rendering software:
 A good level of realism is achievable

Conclusions & Future Work

38Thursday, July 25, 13



 Most of credit for the look of the fur in Life of Pi 
goes to the digital artists

 Main contributions of our rendering software:
 A good level of realism is achievable
 Results are highly art-directable

Conclusions & Future Work

38Thursday, July 25, 13



 Most of credit for the look of the fur in Life of Pi 
goes to the digital artists

 Main contributions of our rendering software:
 A good level of realism is achievable
 Results are highly art-directable
 Rendering is fast enough for many lighting iterations

Conclusions & Future Work

38Thursday, July 25, 13



 Most of credit for the look of the fur in Life of Pi 
goes to the digital artists

 Main contributions of our rendering software:
 A good level of realism is achievable
 Results are highly art-directable
 Rendering is fast enough for many lighting iterations

 Future work:
 Improve hair scattering, including multiple scatter

Conclusions & Future Work

38Thursday, July 25, 13



Rendering Fur in
Life of Pi

Toshi Kato
Kevin Beason
Rhythm & Hues Studios

Ivan Neulander
Google

39Thursday, July 25, 13



Rendering Fur in
Life of Pi

Toshi Kato
Kevin Beason
Rhythm & Hues Studios

Ivan Neulander
Google

39Thursday, July 25, 13



Rendering Fur in
Life of Pi

Toshi Kato
Kevin Beason
Rhythm & Hues Studios

Ivan Neulander
Google

39Thursday, July 25, 13


