
Rendering Fur in “Life of Pi”

Ivan Neulander
Google Inc.

Toshi Kato, Kevin Beason
Rhythm & Hues Studios

We present several technical advancements developed at
Rhythm & Hues for the efficient rendering of photorealistic fur
in Ang Lee’s Oscar-winning feature film Life of Pi. We drew heavily
on this work to stereoscopically render the tiger Richard Parker and
several other animals, all with sufficient realism and aesthetic control
to capture the director’s ambitious vision.

We summarize existing work on which our implementation builds,
and describe in detail some recent improvements in the areas of hair
shading, performance optimizations, and post-rendering tools for mo-
tion blur and stereo image synthesis.

Hair Shading

Life of Pi was our first feature film to rely almost exclusively on area
lights. We used multiple importance sampling (MIS) to combine light-
based and BSDF-based sample rays, deploying our adaptive impor-
tance sampler [Neulander 2011] to weed out occluded or otherwise
unimportant light paths during heavy ray gathering. We used a com-
bination of an HDRI-mapped infinite sphere to capture distant light-
ing, with smaller rectangular and finite-sphere lights to model nearby
source of illumination. Image-based importance sampling, based on
precomputed two-dimensional CDF tables, was critical to rendering
low-noise, high-contrast lighting from the HDRIs, which were gener-
ally sampled at full resolution in order to preserve crisp shadow detail.

The BSDF used for our hair strands was based on the cone-shell
model described in [Neulander 2010], which strikes a good balance
of forward and backward scattering, and a relatively simple deriva-
tion. For Life of Pi we implemented two enhancements: 1) a secondary
specular lobe that could be shifted along a hair strand and whose shape
and color could vary independently from the primary specular lobe
(this mimics the TRT component of Marschner’s model). 2) We opted
for a more aggressive BSDF-based importance sampler, using a pre-
computed CDF table to approximate the Wigner semicircle distribution
(the optimal choice for this BSDF). When used with MIS for specu-
lar reflections, this produced less noise than the flatter piecewise-linear
importance PDF originally proposed.

Renderer Optimizations

We made extensive use of the hair reflection cache described in [Neu-
lander 2010], which sparsely stores primary hair shading samples
along each strand in a temporally coherent yet refinable fashion. We
extended this cache to store individual contributions from various light
paths, and optimized its memory layout using clustered allocations to
reduce fragmentation. We also implemented a read-copy-update mech-
anism to minimize thread locking while accessing the cache. The use
of this cache cut our render times in half, simultaneously reducing
noise relative to uncached hair shading.

A large proportion of render time was spent testing occlusion along
hair-based gather rays, with layers of semitransparent fur being the
most common and expensive occluder. We employed two techniques
to accelerate this: The first was a modified form of the volumetric oc-
clusion approximation described in [Neulander 2010], which reliably
identified rays that were likely to be blocked by nearby skin, alowing
the renderer to avoid tracing them. The remaining non-skin-bound rays
were attenuated using an accurate raytraced estimation of their occlu-
sion. The second optimization leveraged our renderer’s dual represen-
tation of fur as both scanline triangles and raytraced hair primitives.
This allowed using screen door transparency to accelerate the ray trac-
ing: For the ray-occluding fur, semitransparent tube primitives were
made opaque and their thicknesses were correspondingly reduced so
as to preserve coverage. These operations were applied at the con-
trol vertices of each strand, allowing for precise lengthwise variation
in opacity and thickness. By making these strands thin and opaque,
we eliminated the need to trace multiple levels of transparency rays
through them, and we also reduced the number of ray intersections by
shrinking the ray targets. This produced a dramatic, artifact-free speed
increase for secondary gather rays, while preserving the desired look
of true transparency for the primary rays.

Postprocessing

Due to the immense geometric complexity of our fur, computing mo-
tion blur in the renderer by explicitly sampling visibility over time
would have greatly increased our render times. So we made exten-
sive use of our pixmotor tool [Neulander 2007] to synthesize motion
blur by postprocessing static images using motion vectors (efficiently
output by our renderer). For Life of Pi, we redesigned pixmotor’s high-
resolution work buffer to reduce its memory footprint. This was en-
tailed by the high number of color layers stored in each rendered im-
age (containing individual contributions of various lights and various
scatter events per light). Our solution was to store normalized device
coordinates in the work buffer, rather than explicit colors as before.
While this added a level of indirection in accessing pixel colors, it ulti-
mately sped up pixmotor by significantly reducing memory bandwidth,
especially with multithreading.

To improve efficiency on stereoscopic projects such as Life of Pi, we
extended pixmotor to synthesize right-eye images from rendered left-
eye images, a postprocess we labeled pixstereo. Primarily horizontal
motion vectors were accurately computed from the parallax between
the left and right cameras, and these were used in a specialized single-
iteration mode of pixmotor to generate a pixel-shifted image as seen
from the right-eye camera. We applied more aggressive hole-filling al-
gorithms here than with pixmotor, and used an even higher-resolution
work buffer (often 6x) to preserve quality. The above memory op-
timization was crucial, since storing all color channels at 6x resolu-
tion would have exceeded our RAM budget. For some rendered ele-
ments, the pixstereo images were of sufficient quality for final shots,
but mostly they were suitable only for preview. However, with run-
times under a minute, the right-eye images effectively came for free,
allowing many iterations of animation and lighting to be viewed stereo-
scopically without the added cost of right-eye rendering.

References

NEULANDER, I. 2007. Pixmotor: a pixel motion integrator. In ACM
SIGGRAPH 2007 sketches, SIGGRAPH ’07.

NEULANDER, I. 2010. Fast furry ray gathering. In ACM SIGGRAPH
2010 Talks, SIGGRAPH ’10.

NEULANDER, I. 2011. Adaptive importance sampling for multi-ray
gathering. In ACM SIGGRAPH 2011 Talks, SIGGRAPH ’11.


