

SIGGRAPH2011

Adaptive Importance Sampling for Multi-Ray Gathering

Ivan Neulander -

Objective

- Minimize noise during ray gathering operation
 - Integrating radiance over solid angle at a fixed position

Importance Sampling

- SIGGRAPH2011 Rbythw&Hjors
- Alter sample choices and weights in order to reduce sample variance
- Commonly based on:
 - BSDF
 - lighting environment
 - Both (MIS)
- Difficult to account for occluding geometry

Adaptive Importance Sampling

- Allows importance sampler to adapt to ray occlusion
 - Reduces ray density along occluded directions
 - Does not introduce bias
 - Works with other IS schemes

Example: Infinite Area Light

- Uniform
- PHIS
 - Pharr-Humphreys IS
- PHIS + AIS
 - Pharr-Humphreys + Our Adaptive Importance Sampling

Example: Infinite Area Light

Initial Idea #1

- For each occluded ray, adjust MIS to favor BSDF over lights
 - Does not generally reduce noise
 - Usually increases it

Initial Idea #2

- Modify cdfs of PH sampler dynamically based on ray-sampled directions
 - Does reduce noise, but:
 - Too expensive for large maps
 - Does not generalize to arbitrary area lights

Our Approach

- Each ray is rated by the renderer
 - Compares actual radiance to unoccluded radiance
- Rating is incorporated into an affinity map
 - Spherical mapping: direction → pixel coordinate
- Future rays are stochastically accepted or rejected based on the affinity map
- New batch of rays starts with empty affinity map

Affinity Map

- Multi-Resolution spherical texture
 - Larger pixels → less variance but less directional specificity
 - We use highest resolution where affinity < 1 (else 1)
- 3 float channels:
 - [affinity sum, weight sum, reset counter]
 - [affinity sum, weight sum] start at [1, 1] → biased toward high affinity

0 rays

32 rays

128 rays

$$\begin{array}{rcl} \text{Minimum affinity} & \text{Mean affinity} \\ \text{affinity}(\theta,\phi) &= a_{min} + \frac{\max(\theta,\phi)[0]}{\max(\theta,\phi)[1]} (1-a_{min}) \\ a_{min} &= 1/(tol \cdot height_{map}^2) \\ & & \text{``penalizes'' large pixels} \\ & & w &= 1/\text{affinity}(\theta,\phi) \\ & & & & & \\ \max(\theta,\phi)[0] & + = rw \\ & & & & \\ \max(\theta,\phi)[1] & + = w \end{array}$$

Stochastic Ray Rejection

Russian Roulette:

Each ray is stochastically accepted or rejected based on its *affinity* value

- Rejected ray is skipped without tracing or shading
 - Does not count toward desired ray total
- Accepted ray is traced and shaded
 - Counts toward desired ray total
 - Weight is scaled by 1/affinity

Unconditional Ray Rejection

- Rays outside BSDF support are always rejected
 - Do not count toward desired ray total
 - No weight adjustment following non-rejection

Adaptive Sampling

- We continue drawing rays from a batch until n are accepted
- We count rejected rays as zeros but do not sample them
- Two problems:
- 1. Sample stratification is tricky
 - Unstratified sampling is noisy
- 2. Selection bias
 - Average for ray batch is biased toward high-affinity directions

Sample Stratification

- Two issues:
 - 1. Total sample count is unknown
 - 2. Only a random subset of samples is used
- Simple random sampling works, but is noisy
- Our approach: use 3-D Halton sequence for sample placement and rejection

simple

Halton

Selection Bias: Problem

Analogy:

Country where people continue having children until *n* boys (50% chance of boy vs. girl)

- Child → ray
- Boy → accepted ray

e.g. n = 2 BGB GBGB BGGGB ...

- Family → batch of ray
- Average among all children : 50% boys (unbiased)
- Average family: >50% boys (biased) BB GGGGGGGGGBB
- Need family average to be unbiased
 - All families carry equal weight in our census

Selection Bias: Solution

 To remove bias: Continue having children until *n*+1 boys but reject last boy

ignored

- Back to gathering a batch of n accepted rays:
 - Keep sampling until n+1 accepted rays
 - Count all rejected rays after n rays
 - Ignore the last (accepted) ray
- E.g. n = 3, p = 25%
 - Biased: 0010000101
 - Unbiased: 0010000101001 <</p>

Shadow Edge Problem

off aggressive

AIS setting

Shadow Edge Solution

SIGGRAPH2011

- Conservative Rejection:
 - any increase in affinity → force high affinity at and around current pixel (1-pixel border)
 - Wastes more rays on "dark" directions...
 - ...but avoids missing rays on "bright" directions
- Example (tol = $\infty \rightarrow a_{min} = 0$)
 - Affinity =
 - 1 / 1 = 1.0
 - 1 / 2 = 0.5
 - 1 / 4 = 0.25
 - 1 / 8 = 0.125
 - 1 (forced)

Shadow Edge Solution: Result

SIGGRAPH2011

 Good balance of noise reduction at shadow interior vs. edges

off

aggressive conservative

AIS setting

Results: render times match

- Model: 400k tri
- Lighting:
 - Infinite area light with HDRI texture
 - 2 sphere area lights
 - 1 plane area light

	Reference	AIS
Nominal rays/pixel	158	116
CPU time per frame	174.9s	174.8s

Results: render times match

Performance Considerations

SIGGRAPH20

- Affinity map overhead
 - Speed: 2-5%
 - Memory: < 100KB typically</p>
- Time cost of ray rejection: depends
 - Benefits from efficient underlying IS
 - No rejection sampling → expensive to adjust IS profile on the fly
- Additional rays being traced and shaded: depends
 - Accounts for most of the render time increase with AIS
 - But these rays tend to contribute significantly to surface irradiance

Future Work

- Allow for perturbation of ray origins in batch
 - Idea: bias affinity toward 1 as origins diverge
- Automatically disable AIS in some cases
 - E.g. giant penumbra
- Improve parametrization and filtering of affinity map
 - Point-sampled lat-long map is fast, but not ideal
 - Use less distorting mapping, bilinear filtering

Conclusion

Thank you to Rhythm & Hues

- Keith Goldfarb
- Kevin Beason
- Chris Rogers
- Ryan Gillis
- This talk:

www.neulander.org/work#sketch2011