

Fast Furry Ray Gathering

Ivan Neulander Rhythm & Hues

Objective

Render fur convincingly: Lighting interacts with geometry in the scene Objects and environment maps serve as light sources

Rendering must be fast and art-directable

hythm + Hues Studios

Objective

Our approach: "ray gathering" Sample incident radiance along many directions Weight it by material's BRDF Determine reflected radiance How do we do this efficiently?

Overview

1. Hair Scattering Model Concisely generates gather rays 2. Volumetric Occlusion Model Eliminates ray-hair intersections 3. Reflection Cache **Evaluate fewer shading samples**

1) Hair Scattering Model

Kajiya-Kay model [SIGGRAPH '89]

- Treats hair strand as an infinitesimally thin cylinder
- Consists of separate diffuse, specular submodels
- Describes reflectance in terms of hair tangent

Rhythm + Hues Studios

1) Hair Scattering Model: Kajiya-Kay Diffuse Reflectance

> **Diffuse** = sin(\mathbf{T} , \mathbf{L}) = sqrt($\mathbf{1} - \mathbf{T} \cdot \mathbf{L}^2$) $\pi \operatorname{avg}(\max(\mathbf{N} \cdot \mathbf{L}, \mathbf{o}))$ all around **T** = ∞ average Lambert reflectance around strand 0 0 Ε

1) Hair Scattering Model: Kajiya-Kay Specular Reflectance

> Specular = $[sin(T,L) sin(T,E) - (T \cdot L)(T \cdot E)]^{p}$ = $[sqrt(1 - T \cdot L^{2}) sqrt(1 - T \cdot E^{2}) - (T \cdot L)(T \cdot E)]^{p}$

 $=\cos^{p}\theta$

p is a phong-style exponent

1) Hair Scattering Model: Our Cone-Shell Model Defined by a pair of concentric cones about z-axis, bounded by: θ_{min} , θ_{max} Solid angle between the cones is the "Cone-Shell" Thickness of cone-shell z-axis defines blurriness of cone-shell reflection **H**max θ_{min}

shading point

1) Hair Scattering Model: Our Cone-Shell Model

U(0,1) pair ξ1, ξ2 generates ray in direction (*x*,*y*,*z*) with BRDF *weight*

$$x = \sqrt{1 - z^2} \cos(2\pi\xi_2)$$

$$y = \sqrt{1 - z^2} \sin(2\pi\xi_2)$$

$$z = \cos\theta_{max} + \xi_1 (\cos\theta_{min} - \cos\theta_{max})$$

$$eight = z\cos\theta_{mid} + \sqrt{1 - z^2}\sin\theta_{mid}$$

- Intuition for weight:
 - cosine of angle ray makes with middle of cone-shell ($\theta_{mid} = \theta_{(min+max)/2}$)
 - $= \cos(\theta mid \theta ray)$
 - = $\cos \theta$ mid $\cos \theta$ ray $\sin \theta$ mid $\sin \theta$ ray

W

 $= z \cos \theta mid - (1 - z^2)^{1/2} \sin \theta mid$

1) Hair Scattering Model: Our Cone-Shell Model

- At render time, we express these in terms of
 - E = eye vector
 - T = tangent vector
- β = blur angle radius min For diffuse, mid Cos: 0 mid ≠ 0 max
- $x = \sqrt{1 z^2} \cos(2\pi\xi_2)$ $y = \sqrt{1 z^2} \sin(2\pi\xi_2)$ $z = \cos\theta_{max} + \xi_1 (\cos\theta_{min} \cos\theta_{max})$ weight = $z\cos\theta_{mid} + \sqrt{1 z^2}\sin\theta_{mid}$ $\cos\theta_{mid} = -\mathbf{E} \cdot \mathbf{T}$ $\sin\theta_{mid} = \sqrt{1 \cos^2\theta_{mid}}$

weight := weight + $\frac{\cos\beta}{\cos\beta - 1}(1 - weight)$

• We taper weight for $\beta < \pi/2$

1) Hair Scattering Model: Our Cone-Shell Model
Specular Cone-Shell (500 rays, β = 20°)

uniform sampling ; overhead view

uniform sampling ; side view

1) Hair Scattering Model: Our Cone-Shell Model

Compare: Area-lit cone-shell VS Point-lit Kajiya-Kay Diffuse Specular

point lights: kajiya diffuse

cone-shell gather: diffuse 90 deg

point lights: kajiya ns 100

cone-shell gather: specular 7.5 deg

1) Hair Scattering Model: BRDF Importance Sampling

- IS → Draw samples with probability proportional to BRDF weight
 - Essential for cosⁿ lobe, less for cone-shell
- "ideal" pdf is <u>Wigner Semicircle Distribution</u>
 - Ideal only if incoming radiance is uniform
 We chose a raised triangle distribution

1) Hair Scattering Model: BRDF Importance Sampling

Raised Triangle Distribution:

0.6

0.8

0.67

0.0

0.2

0.4

How to generate:

$$\xi_1 = \begin{cases} \sqrt{\frac{1}{2}(8+9\xi)} - 2 & : \quad \xi \le 1/2 \\ 3 - \sqrt{\frac{1}{2}(17-9\xi)} & : \quad \xi > 1/2 \end{cases}$$

1) Hair Scattering Model: BRDF Importance Sampling

Diffuse reflection of white sphere (30 rays/pixel)

uniform sampling

importance sampling

Rhythm + Hues Studios

BRDF IS

2) Volumetric Occlusion Model

- Goal: omit ray-hair intersections
- Assume hair is short and uniformly covers skin
- Compute each ray's fractional occlusion using volumetric local occlusion model
- Supplement occlusion estimate with accurate ray-traced occlusion to skin geometry

Rhythm + Hues Studios

fur

skin

2) Volumetric Occlusion Model: Details

- Based on on SIGGRAPH 2004 <u>sketch</u> by Neulander
 - Each CP placed in virtual sphere based on N_O, h_O
 - Occlusion depends on distance through sphere

$$e^{-\rho(-h_O\mathbf{N_O}\cdot\mathbf{L}+\sqrt{1-h_O^2(1-\mathbf{N_O}\cdot\mathbf{L}^2)})}$$

2) Volumetric Occlusion Model: Example

skin occlusion + volumetric hair occlusion

Knymm + Hues Studios

2) Volumetric Occlusion Model: Example

no occlusion

skin occlusion + volumetric hair occlusion

true hair occlusion

skin occlusion only

volumetric hair occlusion only

2) Volumetric Occlusion Model: Animation

2) Volumetric Occlusion Model: Art Direction

We can alter the apparent fur density:
 Change exponent *ρ* Geometry stays the same

2) Volumetric Occlusion Model: Art Direction

skin occlusion + volumetric hair occlusion

Rhythm + Hues Studios

skin occlusion + volumetric hair occlusion

3) Reflection Cache

Evaluate subset of shading requests

 Cache a sparse set of points, interpolate
 Ward IC

 Ward-style irradiance caching doesn't help
 Irradiance varies abruptly between strands
 but it varies gradually along any one strand

Rhythm + Hues Studios

3) Reflection Cache: Our Approach

 Cache reflected radiance at primary rays along each strand

- Diffuse and specular radiance cached separately
 - at separate user-defined densities
- Sample count varies with pixel length
- Caching is suppressed for very short strands

3) Reflection Cache: Temporal Coherence

 Problem: Shading may "pop" from frame to frame as sample count changes

- Solution: Compute shading on a fixed 2ⁿ-1 lattice for
 - $n_1 = \lfloor \log_2 samples \rfloor$
 - $n_2 = \lceil \log_2 \text{ samples} \rceil$
 - Interpolate between these (similar to mip-map)

3) Reflection Cache: Performance Gain

caching off

caching on

6.2 million rays; 76 s

3) Reflection Cache: Results in animation:

Stats Per Frame
resolution 640x480
strands 53k

- 3.8 million rays
- CPU time on Athlon64 5600:
 ~ 53s

Production Results: Knight and Day

#2255801 : 0117 : br243.030:CmpMain.Main-0017 - 09:57 May 09

#2362736 : 0130 ; br235.110:CmpMain.Main-0039 - 16:50 Jun 04

0021

#2306251: 0372: br232.110:CmpMain.Main-0034 - 15:05 May 22

#2356771: 0170 ; br240.080:CmpMain.Main-0038 - 17:01 Jun 03

hythm + Hues Studios

0021

Future Work

- Approximate multiple scattering using skinbased multi-pole model
- Adaptively modulate cache density based on
 - Hair curvature
 - Perceptual metrics of color variation

Rhythm + Hues Studios

Thank You

 Thanks to Rhythm & Hues
 Josh Bryer, Ray Chih, Ryan Gillis, Toshi Kato, Dan Lazarow, Mike Sandrik
 Slides and abstract available on:

www.rhythm.com/~ivan/pubs.html

Rhythm + Hues Studios