
sap 0034: Pixmotor: A Pixel Motion Integrator

Ivan Neulander
Rhythm & Hues Studios

Pixmotor is an image-based technique developed by Rhythm &
Hues for adding realistic motion blur to a statically rendered im-
age, using a pixel motion and a depth image, which are inexpen-
sively generated by the renderer. The resulting motion blur is of
sufficiently high quality to have seen extensive use in recent motion
pictures, including Garfield: A Tale of Two Kitties and Night at the
Museum. Unique to our approach is a rich set of heuristics, which
virtually eliminate many of the artifacts that commonly plague 2D
motion blur solutions.

Figure 1: top: A 2k frame motion-blurred with Pixmotor was gen-
erated in under a minute on a 2 GHz dual Opteron. bottom: Pix-
motor’s motion, depth, color inputs, and output.

Motivation

Our primary motivation in creating Pixmotor was to reduce ren-
dering time and memory, but we found two additional advantages
over true 3D motion blur (by which we mean physically accurate
temporal integration computed within the renderer):

1) Pixmotor enables unique art direction of the motion blur. For
example, we can use it to seamlessly reduce the motion blur on the
face of a fast-moving character by rotosplining and darkening the
corresponding part of the motion image. Also, the effective camera
shutter can be trivially adjusted at any frame without rerendering.

2) Pixmotor lets us properly motion-blur images that are shaded
outside the renderer, typically in our compositing software (into
which the Pixmotor engine is integrated). For example, we fre-
quently shade reflection-mapped surfaces in the compositor, using
position and normal images generated by the renderer. Such “data”
images cannot be motion-blurred by the renderer without combin-
ing neighboring pixel values, which leads to incorrect shading.

Implementation Overview

Pixmotor requires a statically rendered image with some additional
data channels for each pixel: pixel motion and depth. The former
consists of X ,Y,Z components, with X and Y in NDC space and Z
in camera space. The latter contains Z-values in camera space. Our
renderer generates the motion image efficiently by subtracting each
primitive’s positions at the shutter endpoints.

Pixmotor discretizes the shutter timespan into a set of evenly
spaced moments, whose number depends on the speed of the fastest

moving pixel. The time integration loop follows: At each mo-
ment, pixmotor motion-interpolates each input pixel into a double-
resolution slice buffer. The Z-components of the interpolated pixels
are used to resolve visibility in the slice buffer using Z-buffering.
At this point, the heuristics discussed below are applied to remove
any artifacts that emerge due to pixel divergence or movement into
the view frustum. When all the input pixels have been interpolated
into the slice buffer, it is added to a persistent accumulation buffer,
which ultimately contains the output image. We repeat the process
for all remaining moments and apply a final heuristic.

Our multithreaded C++ implementation interpolates multiple
moments in parallel, with each thread having a dedicated slice
buffer. This yields a near-linear overall speedup, at the expense
of increased memory use.

Limitations and Artifacts

Because Pixmotor only considers a single vector of color, mo-
tion, and depth per pixel, it cannot reliably deal with transparency.
Specifically, information about any surface behind the one near-
est the camera simply does not exist in Pixmotor’s input, so it
is ignored. Removing this limitation would require an algorithm
that processes a more complex dataset, such as a per-pixel frag-
ment list (clearly not an image-based solution). Nevertheless, we
have achieved satisfactory results using Pixmotor on the majority
of materials we commonly render, including those with slight trans-
parency, such as fur.

Transparency aside, the main problem with any 2D motion blur
algorithm, including Pixmotor’s, is the absence of information
about relevant hidden surfaces in the input images—ones that are
either occluded or outside the camera’s field of view. This leads to
holes, which we define as areas of erroneously low pixel coverage
(hence, reduced color and matte values) in the final output image.

The typical workflow at Rhythm & Hues is to render various el-
ements of a scene separately and combine them in the compositor.
This favors Pixmotor by eliminating occlusion between different el-
ements, though self-occlusion and holdouts must still be dealt with.

Hole-Filling Heuristics

Before integration, the motion image can be blurred by a user-
controlled amount to reduce divergent motion among pixels. To
preserve accuracy, we must ignore out-of-matte pixels during the
blur convolution. Using a small blur radius affects motion trajecto-
ries slightly but is effective in eliminating certain holes.

Next, a motion gradient image is computed to detect which pix-
els are susceptible to holes. The gradient computation assumes that
pixels on the edges of the frame neighbor stationary pixels, which
yields high edge gradients when objects move into frame, allowing
the resulting holes to be effectively filled by the following process.

During the motion integration loop, holes are filled in the slice
buffer by searching along their corresponding motion vectors for a
pixel that has a solid matte (the precise value is a user setting that
defaults to just under 1.0). The distance searched depends on the
speed of motion. If a solid pixel is found within a suitable “leash”
distance, which depends on the amount of divergence near the hole,
the solid pixel is replicated into the hole.

Once the motion integration is complete, a final heuristic is op-
tionally applied to remove any remaining fractional holes from the
accumulation buffer. Essentially, non-solid pixels sufficiently dis-
tant from silhouette edges are matte-unpremultiplied to become
solid. The distance threshold depends on the magnitude of pixel
motion near the holes, multiplied by a user-specified scalar.


